Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-
نویسندگان
چکیده
Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function of imaging catheter distance to the vessel wall, the generation of quantitative NIRF data requires an accurate measurement of the vessel wall in IVOCT images. Given that dual modality, intravascular OCT–NIRF systems acquire data at a very high frame-rate ([100 frames/s), a high number of images per pullback need to be analyzed, making manual processing of OCT–NIRF data extremely time consuming. To overcome this limitation, we developed an algorithm for the automatic distance-correction of dual-modality OCT–NIRF images. We validated this method by comparing automatic to manual segmentation results in 180 in vivo images from six New Zealand White rabbit atherosclerotic after indocyanine-green injection. A high Dice similarity coefficient was found (0.97 ± 0.03) together with an average individual A-line error of 22 lm (i.e., approximately twice the axial resolution of IVOCT) and a processing time of 44 ms per image. In a similar manner, the algorithm was validated using 120 IVOCT clinical images from eight different in vivo pullbacks in human coronary arteries. The results suggest that the proposed algorithm enables fully automatic visualization of dual modality OCT–NIRF pullbacks, and provides an accurate and efficient calibration of NIRF data for quantification of the molecular agent in the atherosclerotic vessel wall.
منابع مشابه
Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.
BACKGROUND Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG). METHODS AND RESULTS An integrated high-speed intravascular...
متن کاملValidating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy
Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system...
متن کاملPET Molecular Targets and Near-Infrared Fluorescence Imaging of Atherosclerosis
PURPOSE OF REVIEW With this review, we aim to summarize the role of positron emission tomography (PET) and near-infrared fluorescence imaging (NIRF) in the detection of atherosclerosis. RECENT FINDINGS 18F-FDG is an established measure of increased macrophage activity. However, due to its low specificity, new radiotracers have emerged for more specific detection of vascular inflammation and o...
متن کاملIntravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo.
AIMS Fibrin deposition and absent endothelium characterize unhealed stents that are at heightened risk of stent thrombosis. Optical coherence tomography (OCT) is increasingly used for assessing stent tissue coverage as a measure of healed stents, but cannot precisely identify whether overlying tissue represents physiological neointima. Here we assessed and compared fibrin deposition and persist...
متن کاملIntravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors.
Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015